

EV Net COMPACT SERIES Type 3SLC, 3TLC

1. Type/ Model product:	

2. The manufacturer: "EV NET" Ltd. 15-17, Tintiava str., 1113, Izgrev, Sofia, Bulgaria

3. This declaration of conformity is issued under manufacturer responsibility

4. Subject of the declaration: COMPACT3 series	
Electric vehicle supply equipment, Three-phase, Socket/Teth	ered type

5. The product described above accordance with the following European directives

Reference no.	Title
2014/30/EU	DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND
	OF THE COUNCIL of 26 February 2014 on the harmonisation of
	the laws of the Member States relating to electromagnetic
	compatibility
2014/25/511	DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND
2014/35/EU	OF THE COUNCIL of 26 February 2014 on the harmonisation of
	the laws of the Member States relating to the making
	available on the
	market of electrical equipment designed for use within certain
2014/53/EU	voltage limits
2011/00/20	DIRECTIVE 2014/53/EU OF THE EUROPEAN PARLIAMENT AND
	OF THE COUNCIL of 16 April 2014 on the harmonisation of the
	laws of the Member States relating to the making available on the
	market of radio equipment and repealing Directive 1999/5/EC

6. Relevant harmonized standards and normative documents used for the declaration

Standard	Title
EN IEC 61851-1:2019	Electric vehicle conductive charging system - Part 1: General requirements
EN IEC 61851-21-2:2021	Electric vehicle conductive charging system - Part 21-2: Electric vehicle requirements for conductive connection to an AC/DC supply - EMC requirements for off board electric vehicle charging systems
EN 61508-1:2010 ED2	Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 1: General requirements
EN 61508-2:2010 ED2	Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 2: Requirements for

	electrical/electronic/programmable electronic safety-related systems
EN 61508-3:2010 ED2	Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 3: Software requirements
EN 61508-4:2010 ED2	Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 4: Definitions and abbreviations
EN 61508-5:2010 ED2	Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 5: Examples of methods for the determination of safety integrity levels
EN 61508-6:2010 ED2	Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3
EN 61508-7:2010 ED2	Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 7: Overview of techniques and measures
EN IEC 62368-1:2023	Information technology equipment - Safety - Part 1: General requirements

7. Additional Information:

The manufacturer declares on his own responsibility, that the product complies with the technical and safety regulations, that the product is safe and reliable under conditions of correct installation, use and maintenance as intended. The manufacturer accepted regulations that guarantee the product accordance with described above EU legislation.

Sofia Kamelia Stoykova /Specialist Technical Control/

EV Net Ltd., 15-17 Tintyava str., Sofia, Bulgaria
Phone number: +359 2 9607129 Email address: info@evnet.bg

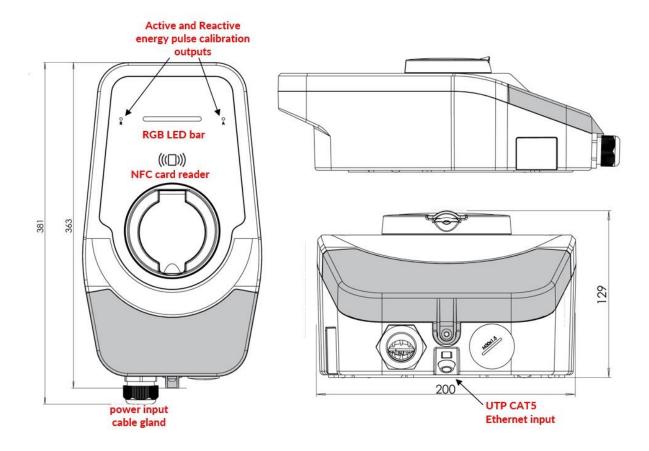
OZEV Approved SMART IP54 & IK08 Protection

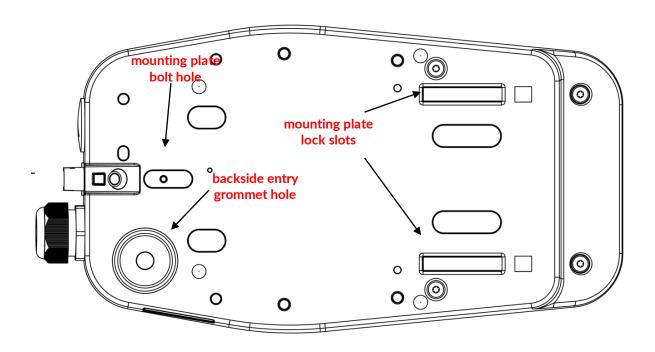
OVERVIEW

EV Net's COMPACT range are SMART AC chargers designed for residential and commercial installations (e.g., fleet buyers) available in single (up to 7,4kW) or three-phase options (up to 22kW).

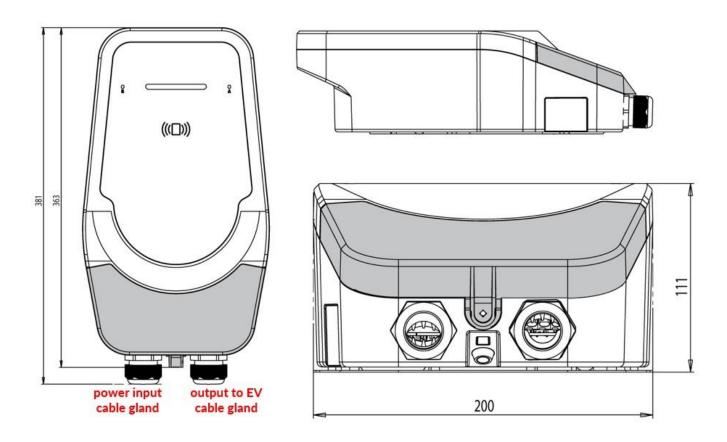
They come ready out of the box and support a variety of additional features, such as sockets with actuator locks or tethered charging cables. For security and safety, NFC authorization and built-in RCD type A with DC leakage fault protection features are included as standard on all models.

The chargers are designed with a robust enclosure made of recycled plastic (up to 100% post-industrial and post-consumer feedstock), providing protection from the weather conditions and accidental impact. Easy setup and maintenance are guaranteed by a modular front cover which enables servicing essential connections without


exposing the entire unit.


Table of Contents

OVERVIEW	4
PRODUCT HIGHLIGHTS	3
FEATURES AND SPECIFICATIONS	3
TECHNICAL SPECIFICATION	10
Compact Wall Mounting Plate	12
What's in the box	12
INSTALLATION GUIDE	13
1. Before installation: Pre-requisites	13
1.2. Tools and materials	14
1.2.3. Site survey and selection	14
1.2.4. Electrical wiring and breaker requirements	16
2. Installation: Mechanical	19
2.1. Installing the mounting plate	19
3. Installation: Electrical	20
Overall system wiring diagrams	20
3.1. COMPACT wiring schemes	25
3.1.1. Socketed	25
3.1.2. Tethered	26
3.2. Installation: RS-485 peripherals (CT clamp/E-meter)	27
3.3. Installation: Commissioning	29
3.3.1. Connecting the COMPACT to an OCPP backend	29
3.3.2. Accessing the web client and configuration	30
3.4. Installation: Troubleshooting	40
3.4.1. Verifying charger functionality:	40
3.4.2. Common issues during commissioning:	40
3.4.3. Hardware reset	41
3.4.4. Tamper sensor	41
4. Maintenance, decommissioning, and disposal	42
5. Appendix I: Error state description with error codes and light ind	ication explained43
6. Appendix II: OCPP and Manufacturer Configuration Keys	49
7. Appendix III: Installing/Removing the service hatch	52



Socket model technical drawing with dimensions. All units in mm. Grey area denotes the service cover, which allows quick access to the power and data cable section without accessing the rest of the unit.

Tethered model technical drawing with dimensions. All units in mm. Grey area denotes the service cover. Note the absence of a socket and the presence of a second power port for the tethered cable.

PRODUCT HIGHLIGHTS

- Compact and modular design allows for separate power/data connections and easy to install and service
- Multiple connectivity options
- NFC-compatible access control
- Support of OCPP 1.6 J communication protocol for online management by using a cloud service (OCPP server), via EVPoint mobile app for iOS and Android
- BLE functionality (Wi-Fi access point provisioning)
- Integrated open PEN conductor protection on all models (no auxiliary grounding necessary)
- Integrated Type A 30mA RCD with 6mA DC protection
- Type 2 socket with automatic electromechanical lock
- Available as tethered or untethered (socketed) models
- Integrated Web client for local setup and diagnostics in case of absence of internet connectivity
- Configuration of devices connected via RS-485 interface remote monitoring of the total current of the installation and connection to an energy meter
- Dynamic control of the charging current, through a remote current transformer (CT Clamp) connected via an RS-485 interface

FEATURES AND SPECIFICATIONS

Smart and efficient charging

The COMPACT series belongs to a class of EVSE called smart chargers, because its entire functionality can be controlled remotely and automatically. This is enabled by the OCPP 1.6J protocol support embedded in the charger. This is a universally accepted control protocol for charging stations, meaning that any OCPP-based server can talk to, control, and remotely update the COMPACT, independent of service provider and other factors.

The main benefits of smart charging are the ease of use and flexibility it offers, because it enables the user to control the time, duration, and amount of charging that is delivered to their EVs. In locations where electricity rates are variable throughout the day, this translates into substantial energy bills savings, as the charger can be configured to take advantage of lower energy prices during off-peak periods. Additionally, the EV NET COMPACT has been designed to function with home solar installations. Thus, it can be set to provide charging only when excess energy is being generated, providing a very efficient utilization of energy resources. Smart charging also enables multiple chargers in a location to communicate with each other, and best utilize the available power to optimally charge several EVs.

The EV NET COMPACT requires an internet connection to execute its smart functions. It can be configured to support a primary and secondary network interface for redundancy. For example, it can maintain a wireless network connection, but fall back to GSM in case of poor connectivity or router failure. If no network connection can be established, the EV NET COMPACT is capable of operating in a configurable "offline plug-in charge" mode, whereby it works as a simple EVSE, providing the maximum permissible charging power when an EV is connected.

COMPACT series of chargers are fully configurable via a web client interface, which is accessible from any Wi-Fi-enabled device. An integrated BLE interface permits the user to provision the wireless access by setting the SSID and password from the EVPoint mobile app.

Access control

As the EV NET COMPACT range is intended for both residential and public applications, it has a number of access control functionalities, such as NFC ("smart card") authorization, mobile app authorization, and full control by the OCPP server backend. Thus, a user can configure the access to their charger(s) from basic unrestricted, to higher levels of control, based on their application.

Rugged compact design

The EV NET COMPACT is designed to have a small footprint and to be easily installed in various locations, both indoors and outdoors. The COMPACT series is available in multiple variants that use the same enclosure, as a universal platform. Models are available as either socket- or tethered-type, giving clients flexibility in customizing their EV charging experience.

Built with safety in mind

The COMPACT series is designed with multiple safety interlocks in order to prevent the hazards associated with high-current, high-power devices, such as electrical shocks, fires, and equipment damage. The device monitors the state of the electrical network, and using a CT clamp, can monitor total installation consumption. All models in the range have a built-in AC/DC RCD, and will prevent leakage currents from causing damage to people and devices. The chargers utilize both sound and light signaling to report their state and possible faults, enabling quick and safe detection of problems. Socket-type COMPACT chargers comes with a standard actuator locking mechanism, which prevents charging cable disconnection while powered, effectively minimizing the risk of arcing and related damage. All chargers are equipped with a tamper sensor, which can detect and report unauthorized opening of the charger body. Additional security features are implemented at the software and firmware level in order to safeguard the device from malicious code and external attacks.

Dynamic load management

Configured and controlled through OCPP server, achieving software DLM EV NET chargers can be configured in groups of 2 or more chargers sharing the same electrical infrastructure. By monitoring their individual and total consumption, the chargers can automatically balance the load they require from the mains supply to provide optimal charging capacity without straining the electrical network. Dynamic load management features are configurable and ideally suited for fleet and public applications. In order to ensure accurate energy measurement in commercial and fleet installations where it is necessary to bill the consumed electricity, an external power meter can be connected to the charging stations of the COMPACT series via an RS-485 interface

TECHNICAL SPECIFICATION

		TECHNIC LESI ECH IC THON		
	Main Features			
,	Power 7.4kW max		22kW max	
	Voltage	230VAC, 50 Hz,	3 x 230 / 400VAC, 50 Hz, 3-	
		1-Phase	Phase	
Current		1 x 32A max	3 x 32A max	
	Power Level	6-32A (software control)		
	Control			
	Socket Type	IEC 62196 Type 2		
	Standby power	<8 VA, 5.2 W		
Protection Protection RCD Type A (30mA)/ DC (6mA), IEC 6100 Neutral voltage (70 V _{rms}) Overcurrent (Overcurrent protection trip I _{max}) Temperature (limiting 72°C -78°C, fault at Undervoltage (software fault at 90% V _{nom} configurable offset, hardware shutdown at V _{rms}) Overvoltage (software fault at 110% V _{nom} configurable offset, hardware shutdown at V _{rms}) Reverse phase or phase-to-phase: the hard handle mains misconnection Tamper sensor: detects unauthorized oper charger body		nt protection trip when I _L > 1.2 x 2°C -78°C, fault at 79°C) fault at 90% V _{nom} with Iware shutdown at 115V _{rms} ±10 ault at 110% V _{nom} with Iware shutdown at 300V _{rms} ±10 eto-phase: the hardware can etion		
	Certification	CE (IEC 61851-1, IEC 61851-2, IEC 60950-1, IEC 60950-22)		
	Material	PC Plastic (up to 100% recycled feedstock) V-2 UL94 Flame retardant		
	Lock mechanism	Servo-type actuator lock (socketed models)		
	Dimension (WxDxH)	200 x 129 x 350 mm (socketed) ; 200 x 108 x 350 mm (tethered)		
Mochanical	Color	Matt Black		
Mechanical	Weight, approx:	3.10 kg (tethered model w/bracket, nocable) 3.50 kg (socketed model w/bracket) Package weight: 1.5 kg	3.20 kg (tethered model w/bracket, no cable) 3.60 kg (socketed model w/bracket) Package weight: 1.5 kg	
	Туре	3 elements: modular front panel, top cover and body mount		
	Mounting Access Type	Vertically. Included metal mounting bracket Ethernet: wired LAN via RJ45 port (10/100Mbps) GSM:2G (3G, LTE, CAT M1, CAT NB-1 on request) WLAN: 2.4 GHz (802.11 b/g/n/e/i)		
Connectivity		Bluetooth LE: for configuration of wireless access point		
	Protocol	OCPP 1.6 JSON		
	Wireless capabilities	Access Point: integrated web server for settings and diagnostics (web client) Station: for backend connectivity Note: Supports simultaneous Access point and Station functionality		
	Electrical	RS-485: supports external devices (CT clamp, energy meter),		
	communication	distance up to 30 m.		

	interface	Note: these interfaces are wired into a combination RJ-45 connector located in the unit's service compartment
Authorization/	Reader	Integrated NFC reader, 13.56 MHz, MIFARE compatible
Status	Арр	EVPoint App Android & IOS
Indicator	LED	RGB horizontal bar light (9 states)
Measurement Extern	Metering	Internal: corresponds to accuracy class 2%
	CT Clamp	External current monitoring via dedicated CT clamp device. Wired communication via RS-485 up to 30m.
	External MID meter compatibility	Yes, on request. Can be configured for operation with Eastron DIN rail MID energy meters via RS-485 wired communication up to 30m.

3TLC Features	
Built in Cable	Tethered cable; Type 2 plug
Cable	5m tethered cable

Remote Diagnostic and Management Features
Error detection and auto restore
Remote Reset
Remote compensation of RCD offset
Remote Firmware Update

Complian	ce
General: IEC 61851-1:2019 Part 1, BS 7671:2018	

EMC: Directive 2014/30/EU

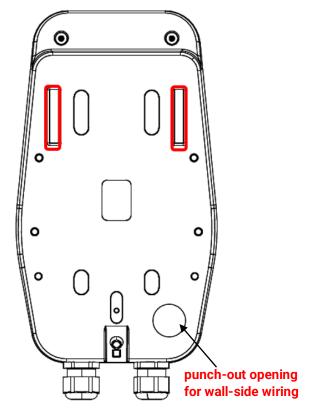
IEC 61851-21-2:2021 Part 21-2 (Emissions Class B, Immunity – Residential Environments); Class B for EN 55032:2015, EN 61000-3-2: 2014, EN 61000-3-3: 2013, EN 61000-4-2: 2009, EN 61000-4-4: 2004, EN 61000-4-11: 2004

2004, EN 61000-4-5:2014; EN 61000-4-8: 2009, EN 61000-4-11: 2004

Safety: Directive 2014/35/EU

IEC 60950-1:2005, IEC 61508, IEC61810-1 (contactors), EN 60947-2:2017/A1:2020, ISO 13849-

1:2015, IEC60364-4-41, IEC 61008-1:2012 (RCD)


Radio equipment: Directive 2014/53/EU

EN 62311:2008; GSM module - EN 60950-1:2006 & A11:2009 & A12:2010 & A12:2011 & A2:2013, ETSI EN 301 489-1 V2.2.0, EN 301 511 V12.5.1 (2017-03); WiFi module - EN 301 489-1 V2.2.0 (2017-03), EN 301 489-17 V3.2.0 (2017-03), EN 300 328 V2.1.1 (2016-11)

Working and Storage Environment		
Electrical	OVC III, PD2	
IP Rating	IP54	
IK Rating	IK08 (base model)	
Temperature	Operational: -25°C ÷ +55°C(3K6) Transportation: -40°C ÷ +85°C (2K4 modified) Storage: -40°C до 70°C (1K5)	
Cooling	Natural air cooling	
Storage Temperature	-40°C to 70°C (1K5)	
Humidity	10% ÷100% Relative humidity, non-condensing	
Altitude	-50 to +2000 m	

CompactWallMountingPlate

Back of unit

Unit resting on mounting plate (yellow)

What's in the box

No	Детайл	SLC, количество	TLC, количество
1	COMPACT 3(S/T)LC with installed	1	1
	wall mounting bracket		
2	NFC MIFARE card with printed CP	1	1
	credentials		
3	Cable gland HSK-M30B	1	2
4	Kinglok grommet - KCGN-M32	1	1
5	Mounting screws ISO 14585 ST	4	4
	4.8x50-C		
6	Expansion plug UX-R FISCHER, Ф 8	4	4
	x 50		
7	User manual and EU Declaration of	1	1
	conformity		
8	Quick installation guide with drill	1	1
	holes template		
9	Warranty card	1	1
10	M30 Waterproof Plug and Nut for	1	1
	M30 Waterproof Plug		

INSTALLATION GUIDE

1. Before installation: Pre-requisites

1.1. Safety and precautions

Intended use: This product is solely designed and approved for use as an Electric Vehicle Supply Equipment (EVSE), used to supply charging current to EVs and PHEVs that do not require ventilation. It is intended to be used within specifications and only with the appropriate auxiliary equipment and adequate wiring.

<u>Note:</u> The device is not intended to be repurposed or reconfigured for any application or use not within its specification. Failure to operate the device as intended may result in severe damage to equipment and personnel and poses a fire and explosion hazard.

Risk of electric shock: This device utilizes voltages that pose an immediate threat to life. It shall be installed only by a licensed or experienced electrician. The device and auxiliary equipment shall be carefully inspected for signs of damage (cracked case, frayed or exposed conductors, and compromised insulation) before installation or use. Any installation or servicing activities shall be executed only after the mains supply has been disconnected from the main breaker or by physically disconnecting the supply conductors at the main distribution board.

This device is intended to be connected to a centrally grounded system. The PE conductor shall be adequately sized and grounded to earth at the service equipment. The EVSE has a built-in RCD, which protects the downstream conductors from earth leakage events. To protect upstream conductors, an RCD Type A- AC: 30mA/ DC: 6mA and automatic breaker (rated current less than or equal to 40A) must be used at the supply equipment.

Risk of fire or explosion: This device handles high voltages and currents. Use of improperly rated conductors can result in excessive heating, leading to a risk of fire and damage to the mechanical integrity of the system. AC grid connection shall be made in accordance with the device technical requirements to ensure that the installation is sufficient to supply the rated maximum current and power. The product uses relays, which can cause arcs during switching. The device shall be installed in a location free from flammable gases and liquids to avoid an explosion hazard.

Mechanical: The product is intended for wall or panel mounting. It shall not be installed on ceilings, floors, or inclined walls. To avoid mechanical damage, the product shall be mounted as described in the installation guide, and using the specified tools and materials.

Proper Personal Protective Equipment is recommended, including but not limited to: eye protection, electrical shock protection, gloves, and other appropriate protection.

EV Net Ltd., 15-17 Tintyava str., Sofia, Bulgaria
Phone number: +359 2 9607129 Email address: info@evnet.bg

1.2. Tools and materials

1.2.1. Tools

- A set of Torx screw drivers with insulated handles
- Torque limited drill (up to 2Nm) or cordless screwdriver, drill bits for masonry (8 mm)
- Hammer drill and bits
- Electrician kit, including pliers, strippers, ferrule and RJ-45/11 crimping tools

1.2.2. Materials

- Conductors (insulated single-core or stranded), conduit, cable tie-downs, cable clamps
- Signal cables (UTP Cat5 cable)
- Connectors (RJ-45/11) and ferrules
- Insulation materials
- Wall anchors for mounting the COMPACT body

1.2.3. Site survey and selection

The EV NET COMPACT can draw up to 32A per phase at 230VAC and **shall be installed on a dedicated circuit**(s). The entire building electrical installation must be adequately sized to accept this load under peak loading conditions. Ensure that all elements of the electrical installation, from the utility connection, through to the dedicated EV NET COMPACT circuit are adequate for the rated power.

Ensure that the distribution panel has a position for 1/3 dedicated circuit breakers (CBs) and RCD. Although the COMPACT has overcurrent protection, each phase **must** be protected with an individual CB. Details are provided in the following sections regarding its rating and possibilities to derate.

The COMPACT is designed for indoor and outdoor installation. To ensure a long service life, select a location that is not exposed to harsh elements, such as direct sunlight and rainfall, snowfall has proper ventilation and normal humidity.

Consideration about connectivity must also be made. For example, if the COMPACT is to be connected online via Wi-Fi, select a site within range of the wireless network to ensure a steady connection. Alternatively, select a site with easy access to a wired network connection or mobile network coverage. Consider that CT clamps, which are installed at the main distribution panel, need a wired connection to the charger. If a MID meter is to be installed, allocate space which is compliant with the manufacturer's requirements.

ELECTRICAL CIRCUIT PROTECTION

Before proceeding with the installation of this type of protection, first consult the chief electrician and/or design engineer of the building/the premises in which you will perform the installation!

In order to protect the electrical installation from short-duration surges to which the charging station is connected, an SPD type 2 surge protection device, according to EN 61643-11:2012, can be installed in accordance with the requirements guidance in BS7671:2018, section 443.

All installations must comply with the current Electrical Installation Regulations (18th edition of the Electrical Installation Regulations BS7671) and be carried out by a qualified electrician.

EV Net Ltd., 15-17 Tintyava str., Sofia, Bulgaria
Phone number: +359 2 9607129 Email address: info@evnet.bg page **14** of **53**

CAUTION!

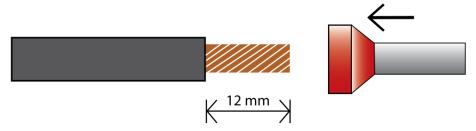
Never install COMPACT in an installation without the necessary protective earthing - TN-S or TT system!

Failure to comply with this requirement may result in serious injury or death!

1.2.4. Electrical wiring and breaker requirements

1.2.4.1. Calculating circuit voltage drop and sizing circuit wiring and breaker

Installed length, m	Voltage drop in copper conductorat 40A, VAC				
	Area, mm ²				
	4*	6**	10	16	
5	1.7	1.2	0.7	0.4	
10	3.4	2.3	1.4	0.9	
15	5.2	3.5	2.0	1.3	
20	6.9	4.6	2.7	1.8	
25	8.6	5.8	3.4	2.2	
30	10.3	7.0	4.1	2.6	
35	12.0	8.1	4.8	3.1	


Note: Shaded areas indicate excessive voltage drop

^{**} recommended minimal conductor area for 32A charging

Installed length, m	Voltage drop in aluminium conductor at 40A, VAC					
	Area, mm ²					
	4	6*	10**	16		
5	2.6	1.8	1.1	0.7		
10	5.3	3.5	2.2	1.4		
15	7.9	5.3	3.2	2.0		
20	10.6	7.0	4.3	2.7		
25	13.2	8.8	5.4	3.4		
30	15.8	10.6	6.5	4.1		
35	18.5	12.3	7.6	4.8		

Note: Shaded areas indicate excessive voltage drop

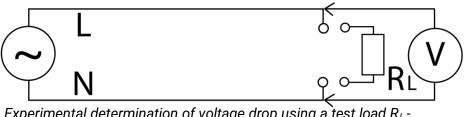
In order for the COMPACT to provide full charging power, it must be supplied through a dedicated circuit capable of handling the full 32A of **current per phase** with less than 10 VAC voltage drop. The circuit's nominal rating should be no less than 40A. The circuits can be implemented with solid or stranded copper wire, or copper-clad aluminum wire. Stranded conductors shall be connected to the device only after a ferrule is installed.

Ferrule installation for stranded power conductors

^{*}recommended minimal conductor area for 16A charging

^{*}recommended minimal conductor area for 16A charging

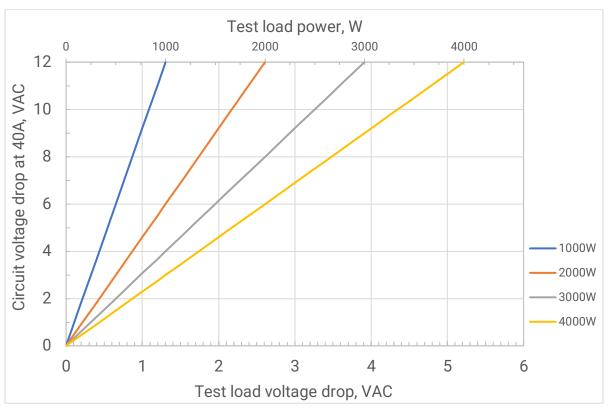
^{**} recommended minimal conductor area for 32A charging



The tables above can be used to determine the approximate voltage drop at peak currents **per phase**. The installed length is the running distance from the source panel to the EV NET **COMPACT** (the table takes into account resistance in **both legs** of the circuit).

For single-phase chargers, the following table can be used to determine the maximum power an existing circuit can provide, if there is no provision for a new installation:

Derating guideline for single-phase charger					
Circuit Capacity*, A	Max Delivered Power, kW				
40	32	7.4			
32	25	5.8			
25	20	4.6			
20	16	3.7			
16	13	3.0			
* C-curve rating of circuit breaker					

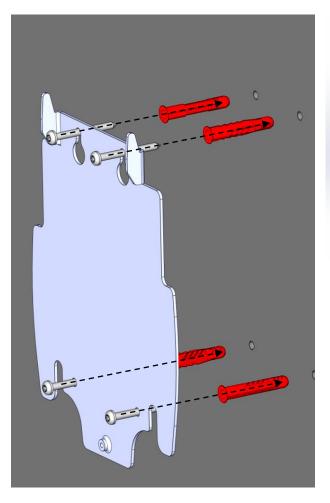

The circuit voltage drop at peak load can also be determined using a test load R_L of lower power rating. The voltage drop is calculated from the difference between the open-circuit and loaded voltage at the circuit load side: **Voltage drop = V**_{open-circuit} - **V**_{Load}

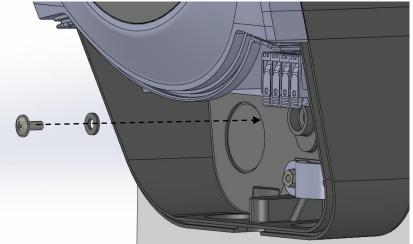
Experimental determination of voltage drop using a test load R_L -measurement

The nomograph below can be used to calculate the circuit voltage losses at peak current. For a given test power load, a line can be drawn from the origin to the corresponding value on the upper horizontal axis. Then, the measured voltage drop can be matched to the corresponding peak current drop by reading out the left vertical axis. The nomograph includes sample plots for 1-4 kW test loads and assumes nominal 230V at which the test load is specified.

Calculation of voltage drop at 40A based on test load of known power

In circumstances where the supply installation is inadequate for the full charging output of the COMPACT, refer to the derating guideline and set the maximum output current accordingly when comissioning a single phase charger.

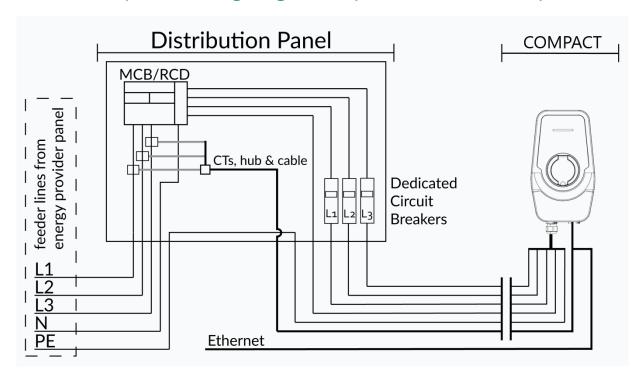

2. Installation: Mechanical

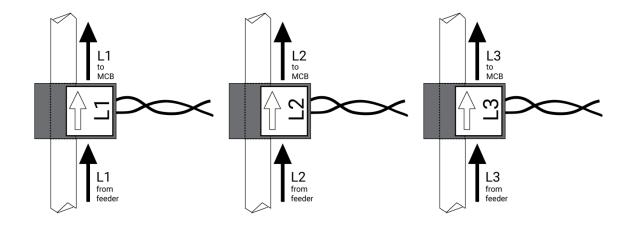

2.1. Installing the mounting plate

The EV NET COMPACT comes with a mounting bracket to facilitate installation and servicing. The charger locks into the mounting bracket and is secured with a single screw, located under the service hatch.

The bracket is wall-mounted via four anchor bolts provided in the kit. A drill template is available on the back of the quick installation manual, which can be used to correctly locate the holes for the anchoring bolts.

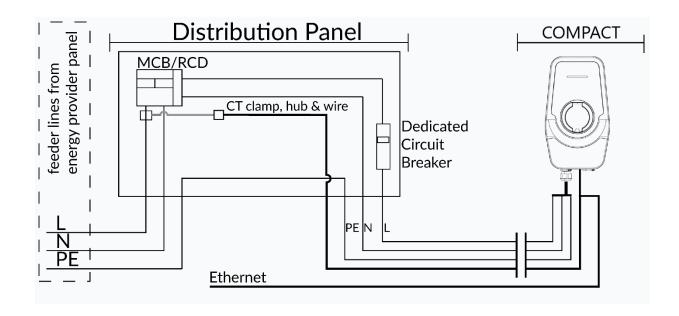
The COMPACT body is attached to the mounting plate by locking its upper side onto the metal hooks and then securing the bottom as shown below.

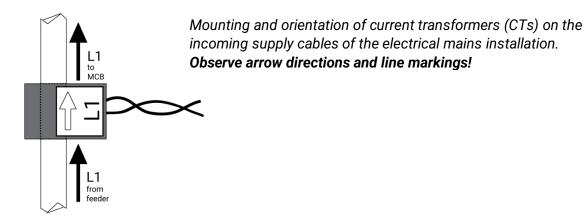




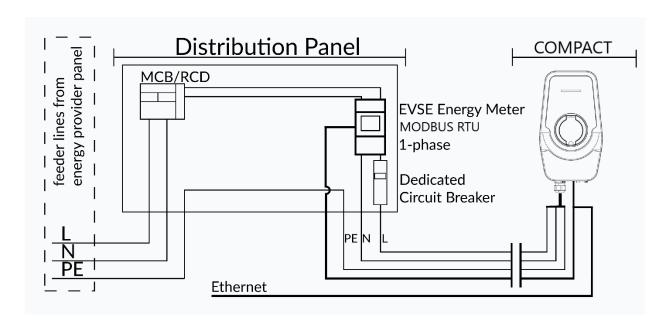
3. Installation: Electrical

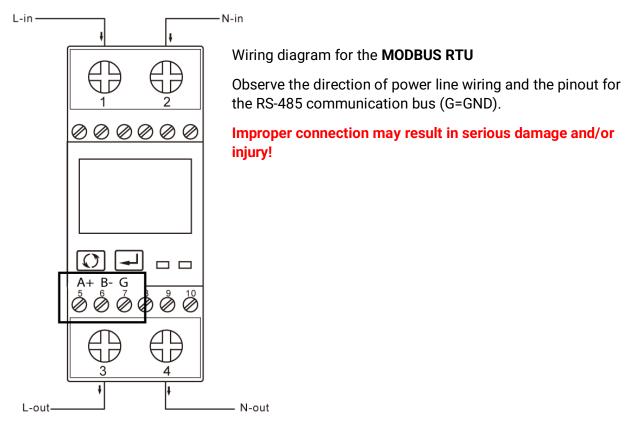
3.1 Overall system wiring diagram: 3-phase with CT clamps

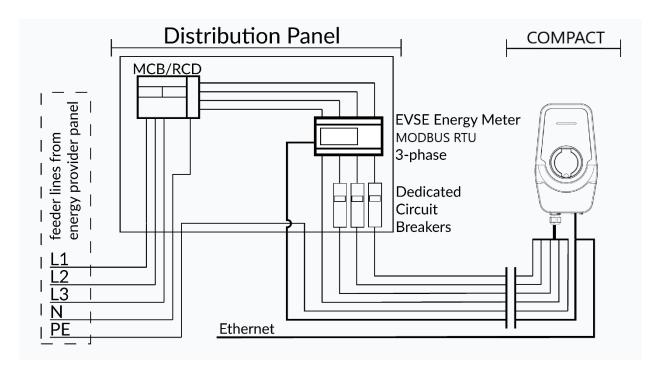


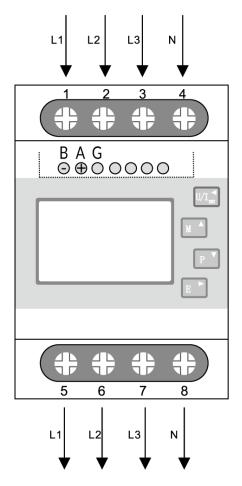


Mounting and orientation of current transformers (CTs) on the incoming supply cables of the electrical mains installation. **Observe arrow directions and line markings!**

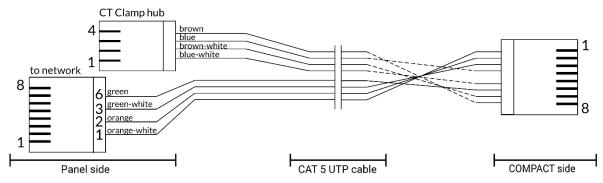

3.2 Overall system wiring diagram: 1-phase with CT clamp




3.3 Overall system wiring diagram: 1-phase with MID meter

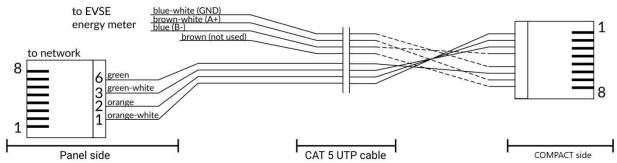


3.4 Overall system wiring diagram: 3-phase with MID meter



Wiring diagram for the MODBUS RTU

Observe the direction of power line wiring and the pinout for the RS-485 communication bus (G=GND).


Improper connection may result in serious damage and/or injury!

Combined Ethernet and RS-485 cable pinout for CT clamp connection

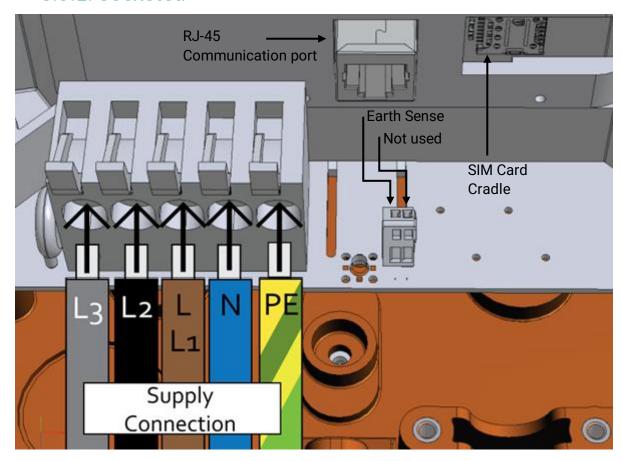
In installations without RS-485 peripherals (CT clamps or energy meter) and with Ethernet connectivity, a standard Ethernet patch cable can be used to connect the COMPACT and a router. For installations with 485 communication, the wiring connects to the COMPACT via the same RJ-45 port on the device by means of 4 unoccupied connections (2 twisted pairs) on the connector. Since every installation will have custom lengths of cable runs, the installers will determine the appropriate lengths of signal cables to use (up to 30 m for both Ethernet and CT clamp/energy meter connections).

Combined Ethernet and RS-485 cable pinout for energy meter connection

Due to the universal availability of CAT5 UTP cable, it can be used as a combined cable for the Ethernet and CT clamp connections, avoiding a second run of signal wires. Two twisted pairs are used for the CT clamp connection and two for the Ethernet Tx and Rx lines. The following table summarizes a suggested connection scheme, consistent with RJ-45B wiring scheme.

Interface		Interface Pin #	COMPACT RJ-45 Pin #	Wire Color	
	GND	1	5	blue-white	
485 4C	Α	2	7	brown-white	
RS-485 4P4C	В	3	4	blue	
_	VCC	4	8	brown	
Ť	Tx+	1	1	orange-white	
rne 45*	Tx-	2	2	orange	
ther RJ-4	Rx+	3	3	green-white	
3	Rx-	6	6	green	
* Pins 4,5,7,8 must not be connected!					

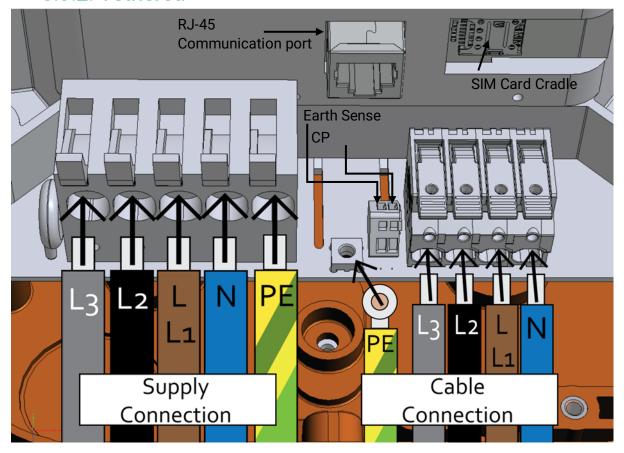
3.5. COMPACT wiring scheme


The power and signal conductors can be connected to the device after the COMPACT body has been mounted to the wall and the cable glands have been installed. The conductors are pulled through the gland with enough slack to make the connections without strain. The COMPACT uses lever terminal blocks for all connections except for the output PE terminal for tethered models, which requires a round cable terminal lug.

COMPACT series 3SLC/3TLC can be configured as either single or three-phase models. Observe the respective wiring procedure and subsequent commissioning steps to ensure proper operation.

Safety note: before working with bare conductors, ensure that the power is disconnected and the circuit is not live!

3.5.1. Socketed


Socketed COMPACT models need the following setup:

- Communication cable (Ethernet and/or RS-485 connection) to RJ-45 Port
- SIM Card for network connection
- Power:
 - Single-phase models L/N/PE connection from distribution board
 - Three-phase models R/S/T (L1/L2/L3) + N + PE connection from distribution board

• Earth sense connection (for diagnostic use only, not configured in installations)

3.5.2. Tethered

Tethered COMPACT models need the following setup:

- Communication cable (Ethernet and/or RS-485 connection) to RJ-45 Port
- SIM Card for network connection
- Power:
 - o Single-phase models L(L1)/N/PE connection from distribution board
 - Three-phase models R/S/T (L1/L2/L3) + N + PE connection from distribution board
- Output:
 - Single-phase models L(L1)/N/PE connection to tethered cable
 - o Three-phase models R/S/T (L1/L2/L3) + N + PE connection to tethered cable
 - CP connection from tethered cable
- Earth sense connection (for diagnostic use only, not configured in installations)

Note: the COMPACT tethered chargers use a dedicated PE output terminal. Connection to the terminal is made using a secure cable lug and M4 screw.

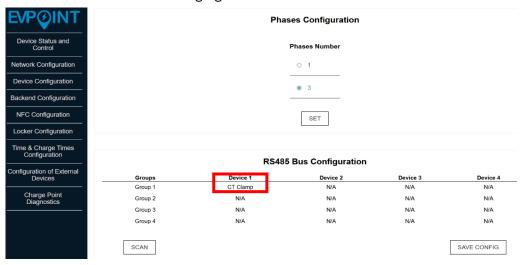
3.6. Installation: RS-485 peripherals (CT clamp/E-meter)

The COMPACT series 3SLC/3TLC support peripheral devices on an RS-485 bus (wired twisted pair connection extending up to 30m). Currently supported devices are CT clamps and MID meters (for example Eastron"Modbus V2" series, #230 for single-phase and #630 for three-phase). The COMPACT supports **one** device on the RS-485 bus per unit.

CT clamps are intended to be installed on the current-carrying live conductors ahead of the MCB. They monitor (every 0.5 sec) the total installation power (e.g., of an entire house or parking lot) and relay the values to the COMPACT unit, which can then regulate its output power to prevent the MCB from tripping.

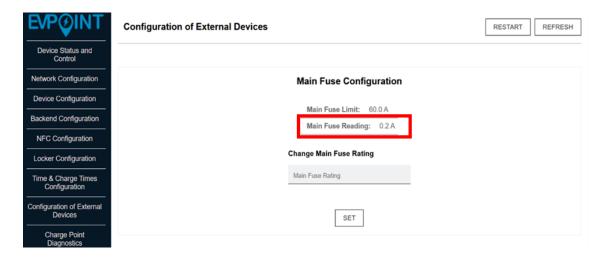
CT clamp kits consist of a split-core current transformer hard-wired to a CT transmitter hub, which measures and converts the reading of the transformer into digital signals for the COMPACT. Ensure that the CT clamps are secured to their designated phase in three-phase installations. Failure to do so may result in incorrect current readings and charging malfunction. If a COMPACT is configured as a single-phase charger, it may use a single-phase CT clamp kit or a 3-phase kit where only the L1 current transformer is connected to the feeder line supplying the charger.

3.6.1 CT clamp connection verification



3.6.1.1 Check for power and active communication to the communication converter. The two green LEDs indicating the presence of RX and TX data packets. They should flash every 0.5 seconds

Note:


In case the LED indication is missing, check the connections of the communication cable!

3.6.1.2 Check the status of the detected devices connected to the RS485 communication interface in the web client of the charging station

3.6.1.3 Check the value of the measured current from the charging station, from the CT clamp:

3.6.2 External MID meter connection verification

When an external MID energy meter is used on the RS-485 bus, the EVSE will obtain the voltage, current, and power measurements from the device and store them in its internal memory. The MID meter is intended to be installed immediately upstream of the COMPACT, so that it will only monitor and measure the power for charging EVs. As noted, the COMPACT series is guaranteed to work with Eastron Modbus DIN rail meters. Other meters that use the **Modbus RTU** protocol can be used, provided that the following required parameters are met:

Baud rate: 9600bps.

Start bit: 1Data bits: 8Parity: NoneStop bits: 1

- MDBUS device address: 0x01

The following table provides the register set that must be implemented in a compatible MID meter (parameters marked with an asterix * are required for three-phase measurements):

Address (Register)	Parameter Number	Modbus Input Register Parameter	Units	Hi Byte	Lo Byte
				Addr	Addr
30073	37	Total Import kWh	kWh	00	48
30075	38	Total Export kWh.	kWh	00	4A
30001	1	Phase 1 line to neutral volts	Volts	00	00
30003	2	Phase 2 line to neutral volts*	Volts	00	02
30005	3	Phase 3 line to neutral volts *	Volts	00	04
30007	4	Phase 1 current	Amps	00	06
30009	5	Phase 2 current *	Amps	00	08
30011	6	Phase 3 current *	Amps	00	0A
30013	7	Phase 1 power	Watts	00	0C
30015	8	Phase 2 power *	Watts	00	0E
30017	9	Phase 3 power *	Watts	00	10

3.7. Installation: Commissioning

Only commission the COMPACT after all electrical and mechanical prerequisites have been fulfilled.

Before switching on the power to the COMPACT circuit, ensure that all electrical connections have been made securely and that no conductors remain exposed or touching. Ensure that the two sections of the device have been firmly secured with the mounting bolts.

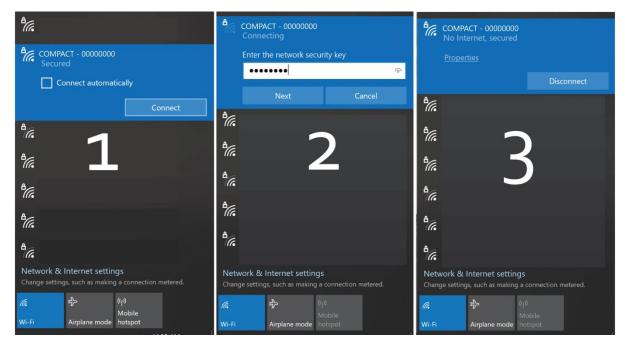
On power-up, the COMPACT will provide visual and sound indication. It will beep briefly and the RGB light ring will light in yellow. The device can then be configured via the web client. Until it is configured, it will remain in the same state, indicated by a constant yellow light. If the product has been preconfigured to connect to a backend server and has an accessible internet network, it will connect and indicate an available status by a constant green light.

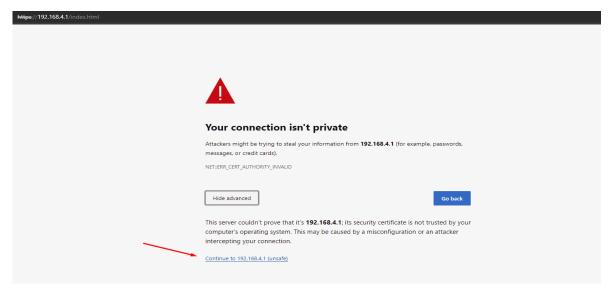
3.7.1. Connecting the COMPACT to an OCPP backend

To function as a smart charger, the COMPACT must connect to the Internet and access an OCPP-based backend. It can achieve this via three physical interfaces: cellular (GSM), WiFi, or Ethernet. For uninterrupted operation, the device is able to switch between interfaces, automatically falling back to a functional connection. Internet connectivity is configured in the charger's web client or the installer's mobile app as further described in the commissioning steps. The following information must be considered:

- Cellular/GSM: to enable as either a main or fallback interface, a SIM card (mini-SIM) must be installed! The SIM card cradle is located under the service cover as indicated in the electrical installation graphics. If the SIM card does not have the APN pre-loaded, it must be manually entered via the web client as explained below.
- **WiFi:** can only be enabled as a main interface. In the web client or installer's app, the relevant SSID and PSK (password) of the access point to be used, are entered.
- Ethernet: can only be enabled as a main interface. Requires a wired connection from a network switch connected to the Internet to the charger's RJ-45 receptacle, located under the service cover. Ethernet connectivity works through an integrated DHCP client, which must obtain an IP address from the local DHCP server on the connected LAN network. Establishing a connection through this interface requires a direct connection without a proxy server. In case connecting through a Proxy server cannot be avoided, the connection must be configured by a system administrator.

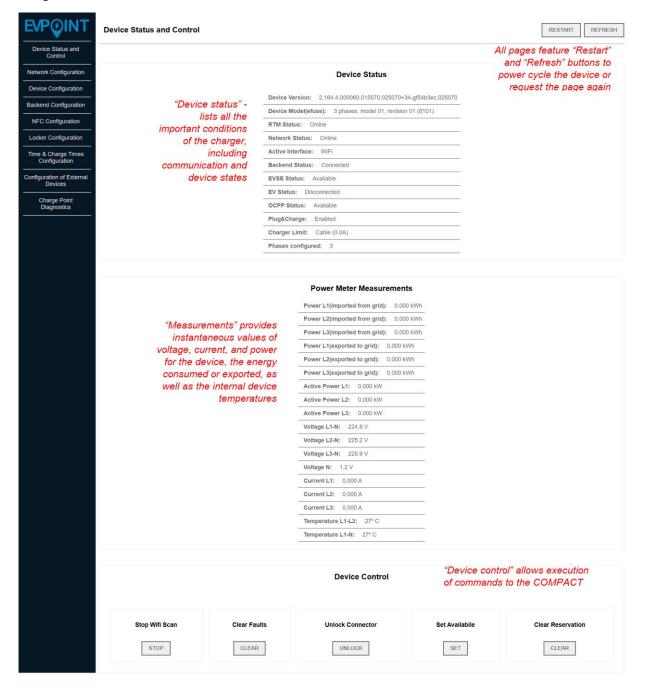
Note: To ensure that the charger is correctly configured and connected to the internet, please check the "Network status" in "Device Status and Control" page from the charger's web client!


EV Net Ltd., 15-17 Tintyava str., Sofia, Bulgaria
Phone number: +359 2 9607129 Email address: info@evnet.bg


3.7.2. Accessing the web client (web UI) and configuration

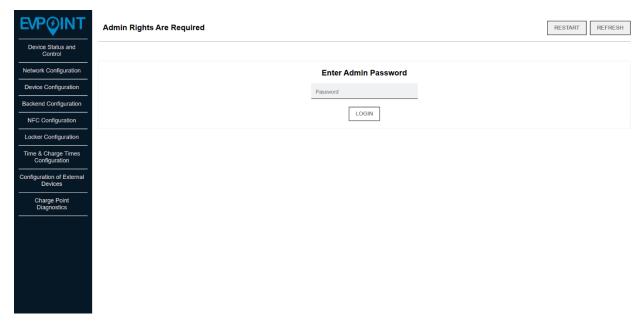
The COMPACT has a backend that is accessible via a web interface. The web client can be accessed from any HTML browser on a Wi-Fi enabled device, such as a smartphone, tablet, or laptop.On startup, the COMPACT broadcasts its name and serial number as a Wi-Fi network (e.g., COMPACT-0000000). After entering its network pass code - PSK (credentials can be found on the factory NFC card supplied with the device), the device will be connected.

Note: some mobile devices may notify that they are connected to a network but have no internet access. Such warnings can be waived and the device allowed to go through with the connection.



In a web browser, enter the index IP address (https://192.168.4.1/index.html). Ignore certificate warnings, if any arise; if certificate validation warnings persist, switch to a different browser (recommended – Firefox, Edge, Chrome, Safari):

This will afford the main page of the EVSE web client - **Device Status and Control** – and a navigation bar on the left:



Network Configuration has important settings that are to be configured when deploying the COMPACT, such as the internet network interface and possible fallback (secondary) interfaces:

VP@INT Netw	ork Configuration				RESTART REFRE	
Device Status and Control						
etwork Configuration			Offline Mode	Configuration	n	
Device Configuration			Plug 8	L Charge	Enable – the charger is available for	
ackend Configuration			•	Enable	plug-in charging when offline without authorization by card or app	
NFC Configuration				Disable	Disable – the charger is not available to	
_ocker Configuration			_		charge when offline without authorization	
ime & Charge Times Configuration			Al	PPLY		
nfiguration of External Devices						
Charge Point Diagnostics			Network Interfa	ces Configura	tion	
		Select main	network interface	Select fallb	eack network interface	
		O Not Set		Not Set		
"Ne	etwork interface" sets the primary and secondary	WiFi		O GSM		
(fal	lback in case the primary	Ethernet		FallbackOffline Tin	neout	
	connection method fails)			0		
	choices for connecting to the internet	O GSM		*0 - Disables fallback in	nterface.	
		MainOfflineTimeou minutes 0	ıt	FallbackOnline Tin	neout	
		*0 - Disables switching to		minutes 360		
	Ethernet Interface					
			GSM I	nterface		
	"GSM interface" is ι	ised to		E.TMGS		
	configure mobile data s		RSSI: N/A BER: N/A			
	and shows diagnostic infor	mation		perator: N/A		
				perator List:		
			APN Change			
			APN			
			SU	ВМІТ		
	Set	lantials of	WiFi I	nterface		
	Set access credentials of Internet network			ueriuais		
	(home or office router l		SSID			
	tne Com _l	pact uses	Password			
			SL	IBMIT		

Further configuration:

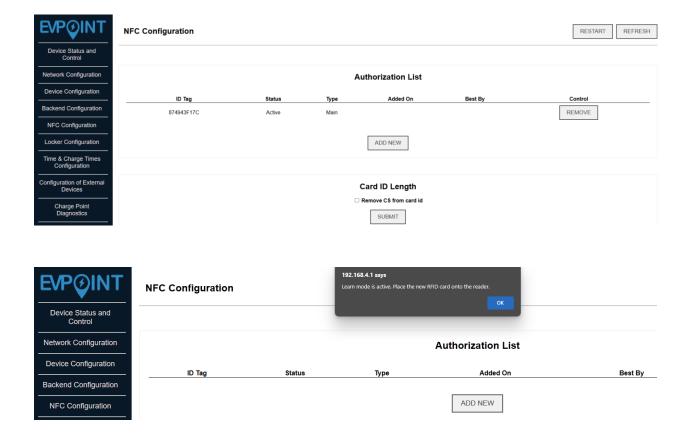
All settings after the "Network Configuration" tab in the web UI require an administrator password to be accessed and set. The "admin" password can be found on the factory NFC card provided with the COMPACT. The devices comes preconfigured with default settings and parameters, some of which may have to be modified based on user requirements and installation specifics.

Note: it is **mandatory** to verify that the COMPACT is correctly configured for the available electrical installation, i.e., for single- or three-phase operation and whether a CT clamp or MID meter is installed. These settings are found in the "Configuration of external devices" menu and are further explained in the following pages. Incorrectly configured external devices and/or number of phases will result in a fault state and/or diminished charging capacity!

EVP@INT	Device Configuration		RESTART			
Device Status and Control						
Network Configuration		Firmware Update Control				
Device Configuration	Firmware update:	Device Version: 2.164.4.000060.015070.025070+34-gf54b3ec.025070				
Backend Configuration	manually enter an	Status: Idle				
NFC Configuration	update address and	Progress: 0%				
Locker Configuration	perform an upgrade	Custom vendor err: 0x0000				
Time & Charge Times Configuration	(see below)	Internal vendor err: 0x0000				
Configuration of External		Update finish err: 0x0000				
Devices		Firmware Update				
Charge Point Diagnostics						
		SUBMIT				
	Return the charger's	Firmware Data Reset				
	firmware to factory	Reset All Settings				
	mode	RESET				
		Device Access Point Credentials				
	Change the Compact's network credentials (web client access)					
		Device SSID				
		Device Password				
		SUBMIT				
		SUDMIT				
	You can change the "admin" password form here	Device ADMIN Password				
		ADMIN Password				
		SUBMIT				

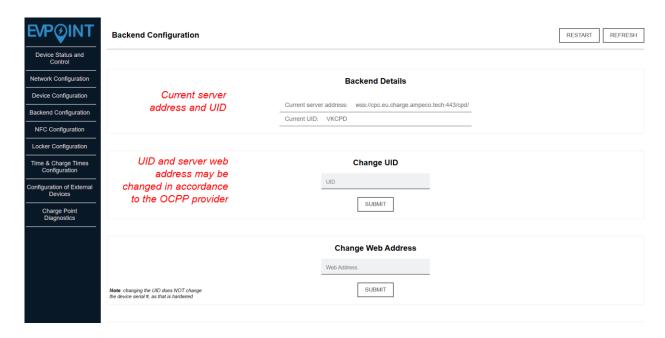
The "**Update**" section allows the configurator to set a firmware update via an Internet address pointing to a firmware update package. The address is set in the address text box and "Submit" is clicked. The update details are monitored above. Note that the COMPACT will enter one or more several reset states while the update is being executed and the web client may become unresponsive at these times. Updates are usually done remotely via the OCPP server but may need to be executed locally for troubleshooting and diagnostics.

Hint: to verify that the firmware update URL is valid, it can be copied into an HTML browser and accessed, whereby a download should automatically begin of a ".bin" file type. If either the download does not begin or the downloaded file is not consistent with a firmware upgrade file, the user should verify that the address is valid and correct.

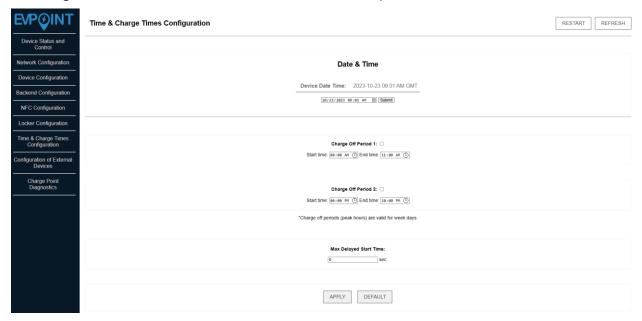


Attention!

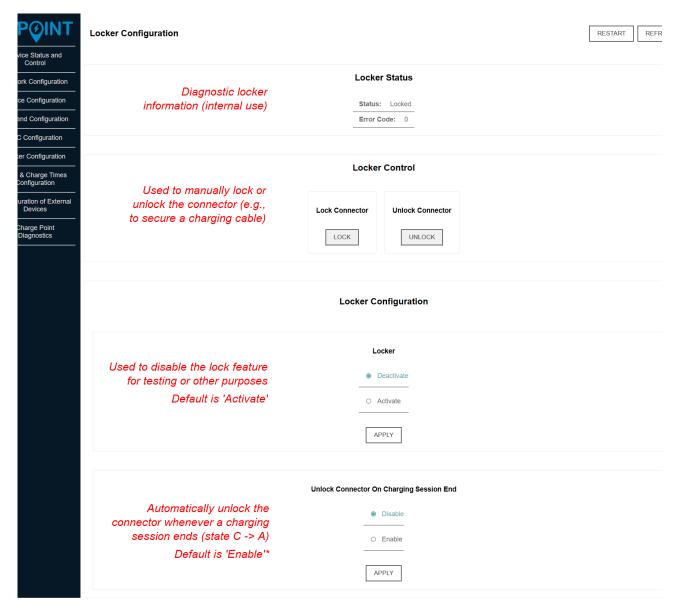
- 1. COMPACT firmware can be modified in two ways Upgrade and Downgrade!
- 2. Do not use random, unverified links, this may cause irreversible damage to the device and is not covered by its warranty!
- 3. Firmware update can be done only at your own risk. The manufacturer is not responsible for unregulated firmware updates!
- 4. In case of need for updating, use links provided only by the manufacturer or by its authorized distributor.



To add or removeNFC access cards, open the "NFC Configuration" tab. Here, the COMPACT can be set into a "Learn" mode via the "ADD NEW" button, whereby tapping an access card on the reader section of the device will cause it to be entered and memorized. Listed cards can be deleted from the "REMOVE" button.



The COMPACT comes with a preconfigured backend server address and UID, which can be found and, if necessary, changed, in the "Backend Configuration" tab:


In the "Date & Charge Times Configuration" tab, the device local time can be adjusted, the default charging profile times can be set for offline use, and the randomized delay time value can be configured. Note that the COMPACT will automatically set its date and time when online:

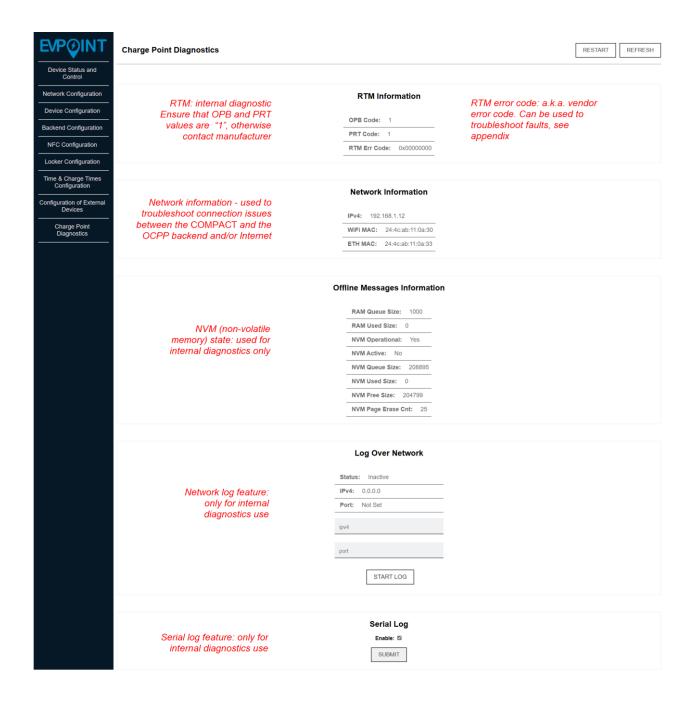
Important note: the COMPACT is compliant with the UK Electric Vehicles (Smart Charge Points) Regulations 2021 and includes the charging times and randomized delayed start (RDS) specifications of Pt. 2/art 10/p-ph 4(a)(b) and Pt. 2/art 11/p-ph 2(a). In its default configuration, the charger will comply to those time profiles and will not permit charging as specified by the periods. Likewise, in offline mode, it will apply RDS. These features can be modified or disabled in the "Date and Charge Times Configuration" window.

All COMPACT models with socket connections come equipped with an electromechanical lock mechanism and the "Locker Configuration" tab is available for the lock status and settings:

*Note: when enabled, the locker automatically disengages if the charger loses power. If a charging cord is to be permanently affixed, the recommended setting is 'Disable'. The user must then manually lock and unlock the cable via the EVPoint app.

To set-up RS-485 peripherals, such as CT clamps or energy meters, and to correctly set the COMPACT's power configuration use the "Configuration of external devices" tab:

EVPØINT	Configuration of External Devices		RESTART	REFRESH
Device Status and Control				
Network Configuration		Main Fuse Configuration		
Device Configuration		Main Fuse Limit: 60.0 A		
Backend Configuration	For CT use only: main fuse setting	Main Fuse Reading: 0.0 A		
NFC Configuration	should equal the overall installation ampacity as dictated by the MCB's			
Locker Configuration	current rating	Change Main Fuse Rating		
Time & Charge Times Configuration		Main Fuse Rating		
Configuration of External Devices		SET		
Charge Point Diagnostics				
		Phases Configuration		
	Required: defines the phase configuration of the device. Incorrect setting will result in a	Phases Number O 1		
	fault state!			
		SET		
	RS4	485 Bus Device Connected Configuration		
	For RS-485 peripherals: sets the	Not Set		
	protocol for communication to the	O Energy Meter		
	respective device. Incorrect setting will result in a	O CT/Clamp		
	fault state!	SET		


Important note: If a CT clamp is used as a peripheral, the COMPACT will continuously monitor the RS-485 bus. If it loses connection with the clamp, charging will be automatically limited to **6A**. This applies both to single and three-phase configurations. A 3-phase CT clamp can be used with a single-phase charger, but not vice-versa!

When an energy meter is used as peripheral, the COMPACT uses the meter's voltage, current, and power measurements to to implement its automatic protection functions, calculate and store energy. If communication between the meter and the EVSE is lost or a meter is not present, the charger will enter a fault state, which can be cleared by reconnecting or by disabling the RS-485 peripherals in the web UI.

With an energy meter in use, the COMPACT can no longer monitor the total installation consumption. Therefore, only a CT clamp peripheral should be used where power limiting may be

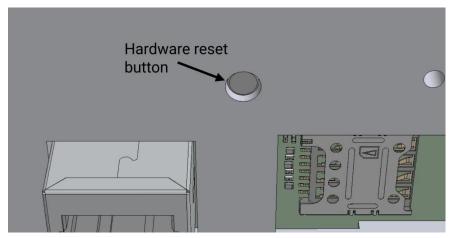
The "Charge Point Diagnostics" tab contains useful troubleshooting information:

3.8. Installation: Troubleshooting

3.8.1. Verifying charger functionality:

At power on, the COMPACT has default settings and configuration, which allow it to work as a basic charger in the offline state. It is possible to verify its basic functionality by plugging in an EV and observing that the charger starts a charging session. The web client main page can be used to verify that the charger is properly measuring electrical values and is online and connected to an OCPP backend.

3.8.2. Common issues during commissioning:


- 1. No sound or light indication at power-on: the COMPACT is designed to always beep and light its RGB strip at power on, to indicate that all components of the device are functional. The most common cause of missing indication is that there is a bad connection along the circuit and the COMPACT's power terminals are not receiving mains voltage. Verify that the circuit is properly connected and that the "L" (L1) terminal is receiving 230VAC nominal from the phase conductor for single-phase devices and that all phases are properly connected for three-phase devices. Check that mains supply parameters are adequate regarding RMS voltage, voltage fluctuations, spikes and noise.
- 2. The LED ring lights up red/blinking red: The COMPACT is indicating a fault. This means that all components of the device are functional, but there is an issue that prevents the overall device from proper operation.
- a. The most common hardware cause of faults when commissioning is a phase reversal. The COMPACT is incorrectly connected to mains and the neutral, live, or earth conductors are switched. Verify that the COMPACT is correctly wired to the grid.
- b. Another common case is overvoltage due to incorrect supply wiring. In single-phase units on 3-phase installations, verify that the device is not across two phases of the grid, but between a phase and neutral. Verify that there are no excessive voltages present on the power line. Check the circuit voltage drop to verify that the voltage is within nominal range.
- c. Verify that the COMPACT is correctly set up for the respective mains and earthing system (number of phases, phase order, etc.). If RS-485 peripherals are used, check their connection and configuration. For socket-type devices, check that the plug is fully inserted and that there is no debris preventing the locker form operating.
- d. Any specific fault can be identified and reset via the web client's main and diagnostics pages. Note that clearing a fault without removing the underlying problem will result in the COMPACT to enter the same fault state after the reset.
- e. Software errors may be cleared by a power-cycle (hard reset) of the device. Disconnect it from power and after a short period, power it on again. Note that this does not work on every fault and is reserved as a simple troubleshooting step.
- 3. Connectivity problems may arise due to improper network setup. Ensure that the chosen network interfaces are correctly configured.

For cellular connections, check that the SIM card is correctly installed and the APN is configured. For WiFi connections, verify that the correct access point is selected and its SSID and PSK credentials are correctly entered and that the wireless network is not behind a proxy. For wired Ethernet connections, check the pinout and connection of the cable and verify that the network switch has direct access to the internet since proxy authentication is not supported. If the LAN network is configured through a proxy, an exception for the chargers IP or MAC address can be configured in the network's settings. The MAC/IP can be found via the web client installer's mobile app.

3.8.3. Hardware reset

The configurator may determine that a factory reset of the device is necessary. A factory reset returns the device to its original software at the point of manufacture. Any firmware updates are not rolled back. The hardware reset button is located in a recessed hole between the SIM card cradle and the RJ-45 connector as indicated in the diagram below.

To reset the device, it must be connected to mains power and operating in idle state. Any vehicle connected to the device must be detached. The "reset" button is depressed for at least 60 seconds. The COMPACT is then reconnected and powered on.

Only perform a hardware reset if so, instructed by customer support. As the COMPACT must be powered when resetting, take proper safety precautions when accessing the service panel to avoid electrical hazards.

3.8.4. Tamper sensor

Depending on the specific hardware configuration, the COMPACT comes equipped with either one or two tamper sensors, which are set to detect access to the charger's terminal panel (optional) and the main electronics compartment (included on all models). The device will alert the OCPP backend server via a status notification in the event that a tamper sensor is triggered.

The normal procedures of installation and commissioning do not involve opening the COMPACT main body; thus, no tamper events are expected to be generated from the main body sensor (unauthorized access to the main electronics compartment may render the COMPACT warranty void!).

As the terminal block lid must be removed during installation and troubleshooting, models which include a terminal panel tamper sensor will generate a tamper event. This "soft" fault does not preclude the charger from operating and may be cleared via the web client or a power cycle (hard reset) of the COMPACT. Further tamper events will be reported to the OCPP backend at every occurrence.

4. Maintenance, decommissioning, and disposal

The COMPACT is designed to be maintenance-free during its lifetime. It is not indented to be repaired or serviced by the end user and any defects or issues should be addressed to the installers and manufacturer technicians.

The COMPACT should be regularly cleaned with a dry or damp cloth by wiping the surfaces. Do not use soaps or solvents, such as petroleum or methylated spirits, acetone, etc., to clean the surfaces, because they can damage the surface finish and compromise the structural integrity of the device. Do not use pressure or steam washers to clean the COMPACT, as it is not designed to withstand high-pressure water jets, which could result in water ingress and internal damage or short-circuits.

For disposal and decommissioning, the COMPACT is designated as electronics waste and must be properly handled and disposed of as per national, regional, and local regulations.

To prevent hazardous electric shocks and the risk of arcing and fire, before decommissioning, ensure that power to the device is disconnected and it is not wired to any active systems.

5. Appendix I: Light state description with error codes and light indication explained

COMPACT RGB Light Status Indicators							
Status		line nation		Offline Illumination		Description	
Available						Device is available to start a charging session. In the online state, it is connected to the OCPP backend. Offline, it may be set up as Plug-in Charge"	
Preparing		OFF		OFF		The charger is preparing to start a charging session. Occurs when an EV is plugged in and the charger is waiting for authorization to being charging.	
Charging						The COMPACT is charging the EV as per app settings.	
SuspendedEV		OFF			OFF	The EV has caused the COMPACT to stop the charging session.	
SuspendedEVSE						The COMPACT has stopped the charging session.	
Finishing		OFF			OFF	The COMPACT is preparing to terminate the charging session.	
Reserved		OFF			OFF	The COMPACT has been reserved for a user (public chargers)	
Unavailable	OFF	OFF		OFF OFF		The charger is not available. This may have been set by the OCPP backend for diagnostic or service purposes.	
Faulted					OFF	The COMPACT has encountered a problem and is in a fault state. More information can be accessed via the web client (see 3.3.1).	

Note: The two adjacent patches indicate whether the status lights are constantly lit (identical colors) or blinking - switching between the two different colors

Temperature Current Limit Thresholds

The COMPACT monitors its internal temperature at two locations. If the temperature exceeds values considered to be dangerous to the electronics and safety, the charger will first limit its maximum charging current to lower its power dissipation. If the temperature still increases beyond that set-point (79°C), the charger will stop the session and enter a "Fault" state.

Topopopotumo C OC	Cumant limit A non phose
Temperature≤, °C 72	Current limit, A per phase 31.8
73	29.4
74	26.8
75	24
76	20.8
77	17
78	12
79	6

VendorID1: EVSE Limits

EVSE Limits are generated by the COMPACT to define the maximum permissible charging current. The device will offer charging current based on the lowest-value limit. 3-phase models have global current limits (i.e., the currents offered on the three phases are always identical).

Code	Name	Description	Detailed Description
0	DeviceCurrentLimit	Max device limit	Default principal current limit, defined by the charger's hardware and set to 32A per phase
1	ProximityPilotLimit	Limit set due to cable's proximity pilot	Type II charging cables have a built-in resistor between the PE and PP terminals, which encodes the maximum current the cable can handle. The limit is enacted if the cable is rated for less than 32A charging current.
2	DeviceTemperatureLimit	Limit set due to high temperature	See "TemperatureCurrent Limits" above. The charger derates the current offered when its internal temperature reaches certain thresholds.
3	ExtTransformerCurrentLim it	Limit set by external transformer	Current limit set by the CT clamp(s) on the mains feeder line based on the rating of the installation's MCB.
4	OCPPGridLimit	Limit set by OCPP grid operator	The limit is enacted when a smart charging profile such as "Charge Point Max Current (A)" is sent by the backend.
5	FuseLimit	Limit set by fuse	The limit is defined by the current rating of the circuit breaker(s) for the charger's mains circuit. Enacted when the charger needs to be derated in installations which cannot provide 32A per phase.

VendorID2 :RTM Errors

RTM errors are generated by the COMPACT when an error occurs and the charging is stopped.

They can be found as "RTM err code" in the Diagnostics tab of the web client.

	ney can be found a	as KIM err co	de" in the Diagnostics tab of the web client.
Code	Name	Description	Detailed Description
0x0001	EVSE_FAULT_ RCD	RCD protection error	This error code is sent when the AC RCD protection is triggered. RCD or "Residual Current Device" is a fault current protection hardware used in chargers to protect the user from current leakage.
0x0002	EVSE_FAULT_ NEUTRAL	Neutral line error	This error code is sent when one of the following occurs: The line terminal and the N terminal are swapped There is more than 70VAC between the N line and the earth There is a missing earth or bad earth connection
0x0004	EVSE_FAULT_ OVERCURRENT	Overcurrent error	This error code is sent when the car decides to import higher current than charge point offers. If the current demand is 10% above the set current limit and lasts more than 6 seconds, the fault is generated. Note that the thresholdis 10% of the present current limit, not the absolute maximum. This fault can be cleared by power cycling the system, by unplugging the charging cable or via the web client
0x0010	EVSE_FAULTS_P OWER_RELAY	Output RELAYS state error	This fault can be cleared by system power cycle, by the charger's web client
0x0008	EVSE_FAULT_ RCD_DC	RCD DC protection error	This error code is sent when the DC RCD protection is triggered. Note that when the DC RCD is triggered the error code 0x0001 is also sent!
0x0020	EVSE_FAULT_ ACT_LOCK_FAUL T	Actuator lock malfunction	On models with a safety electromechanical lock, the COMPACT monitors the lock position. A fault occurs if the actuator fails to lock its pin when a command is sent
0x0040	EVSE_FAULT_AC T_UNLOCK_FAUL T	Actuator unlock malfunction	On models with a safety electromechanical lock, the COMPACT monitors the lock position. A fault occurs if the actuator fails to unlock its pin when a command is sent
0x0080	EVSE_FAULT_CP_ STATE	Control pilot error	
0x0100	EVSE_FAULT_ DIODE_UNPRESE NT	EV diode error - diode in EV not detected	EVs have a diode on the CP line as part of the charging standard. This error code is sent if the COMPACT cannot detect the diode in the EV. The fault is in a problematic EV diode and is cleared by removing the faulty device
0x0200	EVSE_FAULT_ PP_UNPRESENT	Proximity pilot not detected	This error code is sent when a charging cable is plugged in and an attempt is made to start a session, but the charging station cannot read the PP resistor of the charging cable. The charging session will not start.
0x0400	EVSE_FAULT_ MISSING_HOST	Internal host error	For internal use only
0x0800	EVSE_FAULT_ TEMPERATURE	Overheating error	This error code is sent when the temperature of the charging station reaches more than 79 degrees. At this point the charging station will stop charging at all. This fault is cleared when the charging station is power cycled or through the web client.
0x1000	EVSE_FAULT_	Overvoltage	This error code is sent when the power supply voltage

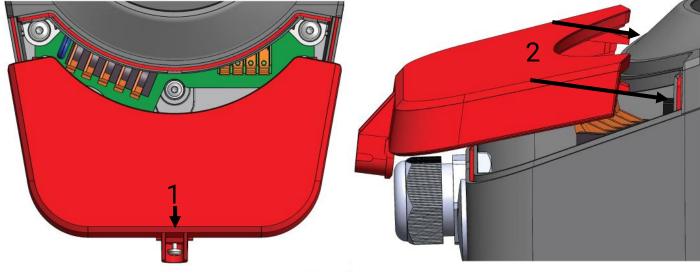
		T	
	OVERVOLTAGE	error	rises by more than 10% of nominal
0x2000	EVSE_FAULT_	Undervoltage	This error code is sent when the power supply voltage
CAZOG	UNDERVOLTAGE	error	drops by more than 10% of nominal
			The COMPACT is designed to automatically recover
			from noncritical faults. This is an auto-recovery flag, sent
	EVSE_FAULTS_	Auto	together with another fault flag to indicate that the
0x4000	AUTO_RECOVER	Recovery	charger will attempt to recover from the fault. For
	Y	110001017	example, in over/undervoltage situations, the COMPACT
			will recover once the supply voltage falls back within its
			nominal value.
			The RTM has calibration data such as Voltage, Current,
	EVSE_FAULT_CA	EVSE	Power, Energy and RCD as well as the device Serial
0x8000	E V 3 E _ 1 / (0 E 1 _ 6 / (calibration	Number. The fault indicates that the MCU cannot access
	_	data error	these data. The fault may be cleared by an authorized
			technician by reloading the calibration data
	EVSE_FAULT_VN OUT OPEN	Power Relay	Stuck power relay fault: the charger monitors its relay
0x10000			contacts and has detected that the neutral contact has
			failed to open and remains closed
0x20000	EVSE_FAULT_VN	Power Relay	Stuck power relay fault: the neutral contact has failed to
_OUT_CLOSE		1 ower relay	close and remains open
0x40000	EVSE_FAULT_VL_	Power Relay	Stuck power relay fault: the line contact has failed to
0X 10000	OUT_OPEN	1 ower relay	open and remains closed
0x80000	EVSE_FAULT_VL_	Power Relay	Stuck power relay fault: the line contact has failed to
3,65555	OUT_CLOSE	· ·	close and remains open
		Device open	This status flag is set to "1", when the device detects the
0x100000	EVSE_TAMPER_E	cover	opening of the main cover. At time of detecting of this
000000	VENT	detected by	event the timestamp is recorded into NVM. The flag is
		tamper switch	cleared at power cycle.
	EVSE FAULT TA	Service cover	It has been detected an event of opening the service
0x200000	MPER2 EVENT	opening	cover. You can check the tamper event timestamp in the
	7/11 EIXE_EVEIVI	detected	backend log.
	EVSE FAULT MIS	There is no	This error occurred because a loss of communication
0x400000	SING_EXT_EMET	connection	with an external meter was detected, while the charger is
5X 100000	FR	with external	configured to use an external meter.
		meter	55.1115ar oa to abo ari oktorriar motori

VendorID3 : Main MCU errors Debugging information related to the COMPACT's main CPU.

	Debugging information related to the COMPACT 5 main CFO.					
Code	Name	Description	Detailed Description			
0	CC_RST_UNKNOWN	Reset reason cannot be determined	The CPU cannot determine the cause of the reset.			
1	CC_RST_POWERON	Reset due to power-on event	The CPU was reset by a power cycle situation.			
2	CC_RST_EXT	Reset by external pin	The main CPU was reset by an external trigger, such as a debugging tool or another MCU in the Compact.			
3	CC_RST_SW	Software reset via esp_restart	Reset triggered via an OCPP command (Soft Reset) or via the web client / installer's app. Reset can also be triggered following a firmware upgrade.			
4	CC_RST_PANIC	Software reset due to exception/pan ic	Reset triggered by a critical error in the CPU (stack overflow, memory corruption, etc.).			
5	CC_RST_INT_WDT	Reset (software or hardware) due to interrupt watchdog	Reset triggered by the watchdog timer due to a timeout at an interrupt.			
6	CC_RST_TASK_WDT	Reset due to task watchdog	Reset triggered by the watchdog timer due to a hung task (timeout based on task's priority).			
7	CC_RST_WDT	Reset due to other watchdogs	Reset triggered by a custom watchdog timers. For internal troubleshooting only.			
8	CC_RST_DEEPSLEEP	Reset after exiting deep sleep mode	For internal use only.			
9	CC_RST_BROWNOUT	Brownout reset (software or hardware)	Reset triggered by an UVLO event at the CPU core power supply.			
10	CC_RST_SDIO	Reset over SDIO	Triggered by an internal system bus event.			

6. Appendix II: OCPP and Manufacturer Configuration Keys

iteys	Custom			
Configuration Key	Key	In use	Example Value	Description
AllowOfflineTxForUnknownId		yes	TRUE	When offline, the device can be set to allow automatic authorization of any "unknown" identifiers that cannot be explicitly authorized by Local Authorization List or Authorization Cache entries.
AuthorizationEnabled			TRUE	
AuthorizeRemoteTxRequests			TRUE	
ChargeProfileMaxStackLevel			100	
ChargingScheduleAllowed ChargingRateUnit		yes	A,W	Configures the units of "charge power" to be used in a charging schedule.
ChargingScheduleMaxPeriods			60	
ClockAlignedDataInterval			0	
ConnectionTimeOut			90	Interval of time from status "Preparing" until the transaction is automatically canceled, due to failure of the EV driver to insert the charging cable into the charger or vehicle. The charger will revert to the original state.
ConnectorSwitch3to1PhaseSupported			FALSE	Configures the three phase chargers to work on a single-phase grid as single-phase charger.
c_ChargingVentilatedEnabled	yes	yes	FALSE	Allows the charger to offer charge when the vehicle enters in state "D" Sets a hard limit on the
c_DeviceLimit_I	yes	yes	320	maximum current the device will offer in 1/10ths of an ampere. The limit cannot be overridden by profiles.
c_MainFuseLimit	yes	yes	600	CT clamp current limit, fuse set in 1/10ths of an ampere
c_RCDProtectionType	yes	yes	0	Configures RCD protection type. Permitted states: 0 - Both AC + DC protection is on 2 - Only AC protection is on Enables configuration of
c_VoltageProtectionOffset	yes	yes	0	expanded voltage protection limits. The default range with the key


GetConfigurationMaxKeys HeartbeatInterval		yes	5 60	set to "0" is +-10% of the nominal supply (207-253VAC). Values of 1-23 are allowed, which expand both lower and upper threshold by the respective amount in VAC. The number of OCPP configuration keys that can be acquired from a single get configuration command. The interval between each heartbeat PDU. The light intensity of the
LightIntensity		yes	100	LED ring of the charger in % of maximum.
LocalAuthListEnabled			FALSE	
LocalAuthListMaxLength			0	
LocalAuthorizeOffline			TRUE	
LocalPreAuthorize			FALSE	
MaxChargingProfilesInstalled			10	
MeterValueSampleInterval		yes	60	The time interval between each meter value during a session.
MeterValuesSampledData		yes	Voltage.L1- N,Voltage.N,Te mperature,Cur rent.Offered.L 1,Current.Impo rt.L1,Power.Ac tive.Import.L1, Energy.Active.I mport.Register .L1	A list of measurands sent for each meter value during a session.
NumberOfConnectors			1	
SendLocalListMaxLength			0	
StopTransactionOnEVSideDisconnect			TRUE	
StopTransactionOnInvalidId			TRUE	
UnlockConnectorOnEVSideDisconnect		yes	TRUE	When set to TRUE the Charge Point SHELL unlock the connector on Charge Point side when the cable is unplugged at the EV
c_MainOfflineTimeout	yes	yes	null	Defines the timeout value for the main communication network interface
c_FallbackOfflineTimeout	yes	yes	null	Defines the timeout value for the fallback communication network interface
c_FallbackOnlineTimeout	yes	yes	null	Defines the duration for which the fallback network interface is active before reverting to the main network interface
C_OCPPNetLog	yes	yes	FALSE	Configures whether

				diagnostic network data logs are sent via OCPP
c_ChargeOffPeriod1	yes	yes	enable,08:00,1 1:00	Defines the first standard period for offline charging
c_ChargeOffPeriod2	yes	yes	enable,16:00,2 2:00	Defines the second standard period for offline charging
c_MaxStartDelay	yes	yes	600	Defines the maximum value for the randomized delay functionality for offline charging
c_LockerDisengage	yes	yes	TRUE	Defines whether the built- in locker is enabled or disabled.
c_CTClamp	yes	yes	FALSE	Presence or absence of a CT clamp
c_CTClampValue	yes	yes	65535	Defines the value range of the CT clamp measurand data
c_MainNetworkInterface	yes	yes	0	Defines the main network interface
c_FallbackNetworkInterface	yes	yes	0	Defines the fallback network interface
c_APN	yes	yes	0	Sets or gets the APN used for cellular network interface

7. Appendix III: Installing/Removing the service hatch

- 1. Ensure that the panel captive screw is fully retracted into the hatch body.
- 2. Place the cover on the main body by first guiding the upper rim and hooks into the Compact
- 3. Swing the service hatch into position, ensuring that the sealing rim is correctly seated. A small gap will remain.
- 4. Push the lower edge of the service lid firmly forward and down until the lid locks into place with an audible click and the gap disappears.
- 5. Use a Torx screwdriver to fasten the panel captive screw and lock the service hatch in place.
- 6. To remove the service hatch, execute steps 1-5 in reverse order.

